# 455. 分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj >= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
注意:
你可以假设胃口值为正。 一个小朋友最多只能拥有一块饼干。
示例 1:
输入: [1,2,3], [1,1]
输出: 1
解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。 所以你应该输出1。 示例 2:
输入: [1,2], [1,2,3]
输出: 2
解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。 你拥有的饼干数量和尺寸都足以让所有孩子满足。 所以你应该输出2.
function findContentChildren(g, s) {
g = g.sort((a, b) => a - b);
s = s.sort((a, b) => a - b);
let i = 0, j = 0;
while (i < g.length && j < s.length) {
if (s[j] >= g[i]) {
i++;
}
j++;
}
return i;
}
const G = [7,8,9,10], S = [5,6,7,8];
console.log(findContentChildren(G, S))
总结:
本道题目说是用贪心算法,其实对我来说本不是很清楚什么是贪心,我的思路就是先排序 然后设定双指针,从最小的开始依次满足 只要有一个超出范围就结束; 本道题还有很好玩的就是 i指针其实就是最终结果,并不需要再设定一个变量来存和,一开始我就多此一举了,!。
← 575. 分糖果 101. 对称二叉树 →